Development of Radar on the Jersey Shore

Fort Monmouth’s Signal Corps Laboratory at Fort Hancock, New Jersey

Coast Artillery Soldiers using sound equipment to locate airplanes, c. 1940.

Mary Rasa
Sandy Hook’s strategic location and military importance dates back to the Revolutionary War because of its close proximity to the Sandy Hook Channel. This was the only channel available for large ships entering New York City. British loyalists were successful in taking over the Sandy Hook Lighthouse from the colonists. This allowed the British control of New York Harbor for most of the war. During each subsequent military engagement of the United States, Sandy Hook, and later, Fort Hancock played a role.

In 1895, Fort Hancock was established and armed just in time for the Spanish American War. This new fort, was an U.S. Army Coast Artillery Post. The Coast Artillery Corps was charged with maintaining forts at every major harbor in the United States, including New York Harbor. They used rifled cannons, concrete gun emplacements, and underwater mines to protect from enemy attack.

In World War I, Fort Hancock once again repeated the role of defender of New York Harbor. In 1907, the new deepwater Ambrose Channel was completed as the main channel into New York. Fort Hancock’s guns needed to cover the range of this
channel from the west side. A new fort on the Rockaways, Fort Tilden, was completed in 1917 to guard the water from the north and east approaches.

Fort Hancock’s gun emplacements were called upon to serve during the “Great War.” They were improved with electricity. In addition to these fixed and disappearing gun batteries, searchlights, telephones, and fire control towers became part of the defenses. This allowed for a better coordination and communications between gun batteries. Also, searchlights and fire control towers located both within Fort Hancock and at other locations along the shore enabled soldiers the ability to spot potential targets out at sea at night.

During World War I, the Sandy Hook Ordnance Depot became a tenant in a less crowded part of the peninsula. This facility was created to stockpile equipment and armaments on the narrower part of the peninsula near Spermaceti Cove. The ordnance would then be shipped out as needed to support the war effort. The Ordnance Depot built fireproof magazines out of concrete on the sand and in the marshy areas along with railroad spurs to bring the supplies to these locations. It was in this former depot area that during the late 1930s a new tenant, the US Army Signal Corps Laboratories, set up camp and was conducting secret work in this remote location surrounded by sand and surf.

Shortly after World War I ended, technology changes lead to Fort Hancock’s weaponry changes. Long range gun batteries,
Kingman and Mills, were completed. These guns had a range of 17+ miles. In the 1920s, 3-inch anti-aircraft guns were added as threat from the skies was a new reality. This only continued during World War II, Korea, and Vietnam. The guns once used to aim at battleships and destroyers were scrapped during and after World War II. Anti-aircraft guns played a prominent role towards the end of World War II and through the Korean War. The year after the termination of hostilities in Korea, anti-aircraft guns were replaced by the Nike Ajax Missile. This was the first surface to air (SAM) missile used by the United States. It's bigger, nuclear powered brother, the Nike Hercules Missile, replaced it and guarded the coasts and major inland cities of the Continental United States until the end of the Vietnam War. On December 31, 1974, Fort Hancock was decommissioned as a military post and was turned over to the National Park Service who owns and operates this peninsula today.

History of Fort Monmouth

Fort Monmouth, New Jersey began in 1917 as Camp Little Silver and later Camp Alfred Vail. In 1925, upon becoming a permanent installation, it was renamed Fort Monmouth after the Battle of Monmouth. It was a location for training the U.S. Army Signal Corps soldiers in World War I. Between the first and Second World War, civilians and officers were working on innovations to radio and communications. The soldiers and civilians assigned at Fort Hancock built by Western Electric.

courtesy of the CECOM Historical Office, Aberdeen Proving Ground, Maryland

Radar antenna shelters at Fort Hancock built by Western Electric.

Radar antenna shelters at Fort Hancock built by Western Electric.
Monmouth were at the forefront of the development of RADAR. The Signal Corps Laboratories were tasked with finding a way to get better observation of airplanes and ships before an attack.

History of Radar development

In the 1880s Heinrich Hertz discovered that radio waves could echo off objects. His work was with electromagnetic waves. At the time, there was no practical application for this type of detection. It wouldn’t be until aircrafts began traveling long distances at rapid speeds that this type of research became a priority.

During World War I, the U.S. Army started working on ways to find enemy aircraft. One of the methods was through sound and another through heat detection. The first Army tests of what would become RADAR were conducted by the US Army Ordnance Corps from 1926 to 1930. In 1930, the US Army Signal Corps and the Army Corps of Engineers were both conducting research in this field, but by 1936, it was exclusively a Signal Corps project. Others countries were also testing this concept at the same time and Great Britain developed a similar system that would be used during the Battle of Britain in 1940.

Major (later Colonel) William Blair was in charge of operations of the Signal Corps Laboratories at Fort Monmouth from 1930 to
1938. Under his direction many important tests were completed on all the different methods available at the time. During his tenure the first functional unit, SCR (Signal Corps Radio) 268 was developed.

In February of 1931, Fort Monmouth was given the first assignment of a new variety, Project 88. This was “Position finding by means of light.” Light, in this context, meant using radiation, infrared, and heat rays, as well as short wave radio. The laboratories in 1931 increased in size with an additional six officers, 23 enlisted men, and 66 civilians, and were housed in nine World War I era wooden buildings. Their mission was to detect the enemy on the surface as well as submarines and also to detect aircraft by electromagnetic radiation.

A heat detection test was completed in 1932 on a blimp at Naval Air Station at Lakehurst but proved inadequate. In 1933, Blair changed the focus of the labs to radio optics with microwaves being researched. Unfortunately while all of these important tests...
were being performed, the Great Depression was raging and defense cuts reduced the civilian workforce by ten employees and cut man hours for the remaining civilian employees.

Tests begin at Fort Hancock

By 1933, the Army increased testing of the detection equipment and used the area between Belmar and Sandy Hook. In July of 1933, the Signal Corps began tests at Fort Hancock with a field testing base at Battery Halleck, a three gun disappearing battery that was inactive. One gun had been removed in 1919. The other two were in place but taken off the roles of active weapons. This battery is part of 9 gun battery and near the northern tip of Sandy Hook with an elevation of 30 feet above sea level. This location was on the Ambrose Channel which was a major advantage for the testing. Constant vessel traffic approaching New York Harbor allowed for enhanced testing of the detection and tracking ability of the thermal units.

The Signal Corps testing was good enough to have the War Department award an additional $100,000 for the expansion of these experiments to include aerial targets, including both blimps and airplanes. The thermal detection experiments continued through the summer of 1935 at Fort Hancock and other test locations near Fort Monmouth, including the Sea Bright Coast Guard Station (former US Life-Saving Station) and the Navesink Light Station (also known as Twin Lights).

One of the most important testing locations during this period was at the Navesink Light Station in Highlands, New Jersey. Being another location owned by the federal government it was used with minimal interruption to everyday life. The Jersey shore is mostly sea level including the testing locations at Sandy Hook. The Twin Lights of the Navesink offered the advantage of over 200 foot elevation above sea level. At the top of the hill, it was also more remote and isolated than Fort Monmouth.

This location had seen other important testing before. Guglielmo Marconi, the inventor of the radio, placed an antenna near the north tower to transmit wireless telegraph messages from a ship offshore. This tower had been extinguished as an active light in 1898. On September 30, 1899, the first wireless messages were demonstrated successfully as Marconi transmitted progress reports of Commodore Dewey's victorious return from the Battle of Manilla Bay into the Hudson River on the flagship *Olympia*. The site also contained a position finding

![Late model of radio Set SCR-268 showing the three metal antennae, transmitter, and three oscilloscopes.](image)

Source: H. W. Andrews from Zahl papers

courtesy of the CECOM Historical Office, Aberdeen Proving Ground, Maryland
system for the gun batteries of Fort Hancock.

In order to use the Navesink Light Station for testing this new secret equipment, the Army made a formal agreement with the Commerce Department. The Department of Commerce was in charge of the Bureau of Lighthouses from 1913 to 1939. This agreement allowed for a searchlight to be on premises. The Army in turn had to allow the lighthouse service to post a notice to mariners before any tests.

In July of 1935, a test with both searchlights and the thermal detection equipment was completed in the Highlands. The notice to mariners stated that for several nights between July 30 and August 9, 1935, that a searchlight would be used for experimental purposes. This lead to the local newspapers posting in several publications about a secret “mystery ray” to track ship locations. The thermal equipment found the target and then a searchlight manned by the Coast Artillery Corps spotted it and tracked its movements. The target was a U.S. Coast Guard Cutter that moved offshore. The test was a success.

In 1936, the Signal Corps continued testing with the heat and radio detectors with a special emphasis on detecting aircraft. Also in this year, experiment on pulse radar began in earnest. In Fiscal Year 1936, the staff assigned to the Signal Corps Laboratories at the new Squier Laboratory Building completed in 1935, was only 8 officers, 17 enlisted men and 92 civilians. These men worked on multiple projects, only one of which was the future RADAR set SCR 268. Funding for this project was beginning to increase and in Fiscal Year 1937 the war department provided $75,741.74 for aircraft detection.

This equipment that was about to be developed did not have an official name until the U.S. Navy in 1940 coined the acronym RADAR for Radio Detection and Ranging. It was adopted by the US Army in 1942. This technology, used to locate ships and airplanes, began first with the use of sound detection and heat detection. RADAR, called Radio Position Finding (RPF) by the Army Signal Corps, completed this task in a different way. It used radio waves that would either echo or bounces off a signal from the incoming enemy ships or aircraft to the equipment which would then give the user the location of the enemy.

On May 26, 1937 a demonstration of radio pulse equipment and heat detectors was conducted at Fort Monmouth with top officials including the Secretary of War, the Chief of Staff, the Chief of the Air Corps and members of the military affairs committees in the House and Senate. The tests were conducted in daytime and nighttime. The nighttime tests included searchlights. Aside from a
few problems that were overcome in later tests, the experiment was a success. This became SCR-268. To the Signal Corps, the most important success of this test was that Secretary of War Woodring provided additional funding for the project. By June of 1937 the Chief Signal Officer asked the Signal Corps Lab director if an additional $200,000 would be enough for the next fiscal year.

Due to the lack of secrecy and security at Fort Monmouth, the Army chief of staff, General Malin Craig, directed the Chief Signal officer to find a more remote location for future tests. It was decided to transfer all field activities from Fort Monmouth to Sandy Hook. Isolated on the peninsula, no one could see the testing and development project being done. The daily water and air traffic provided ample test material. In addition, the equipment was being completed for the US Army Coast Artillery Corps. Fort Hancock, being a Coast Artillery Post made this a perfect testing location. The problem with the relocation, however was that all funds had been spent for the fiscal year 1937 so there was a delay in construction until the new year funding began on July 1, 1937.

Important figures included Lt. Col. Colton, Major Clayton, Captain Rex Corput, and chief engineer Paul Watson and Dr. Harold Zahl, at this new home of the Signal Corps Laboratory, radio position finding section (RPF). By late 1937 the entire section was relocated to the area on Sandy Hook now known as the Fishing Beach. There, Lt. Col. Colton and his section worked on what would be a mobile long range radar which became SCR 270 and searchlight controller radar SCR 268. These two along with SCR 271, which was a fixed long range radar, would be the main early warning systems during the first part of World War II.

With a new fiscal year, buildings and roads needed to be constructed, water and electricity needed to be connected to the site. The land given to this testing was approximately 1/4 mile wide and 1/2 mile long. The borders available for use by the Signal Corps were as follows, “that portion of the Old Ordnance Proving Ground east of Battery Kingman from the swamp in the middle of Sandy Hook eastward to the abandoned pole line approximately 100 feet shoreward from the beach, and extending from the most northerly abandoned rail spur of the old magazine area for 200 yards to the north and approximately 200 yards to the south of the next abandoned railroad spur.” The Coast Artillery has storage magazines of ammunition inside this boundary. The Signal Corps was required to allow access to them for when necessary.
By the end of 1937 a road into the area, power line, telephone communications and a field house for tests was completed. In addition, two coast artillery soldiers were assigned to guard duty and living on site. Although there were no buildings for the men working on the equipment, the men continued their duties through the harsh winter conditions at Sandy Hook. In 1938, wooden antenna shelters measuring 35 x 30 feet with 20 foot high ceilings were constructed with as little metal as possible so that it did not interfere with the radio waves. These were the first “radar” buildings ever constructed. An additional building for shops and storerooms was also constructed by the beginning of 1939.

Fort Monmouth’s buildings were becoming overcrowded so the entire Radio Position Finding Section relocated to Sandy Hook in 1939. This included a new building phase to make room for administration as well as field testing and technical skills. It also included women for the first time. The Signal Corps section was becoming increasingly crowded and would get even more crowded once production of the units was necessary.

Because of its secret classification the contracts with companies to build the units required that they be assembled and tested at Fort Hancock. In 1940, this required the Chief of Coast Artillery to enlarge the boundaries of their area even though high explosives were stored in the boundaries. In turn Westinghouse, working on SCR 270 and SCR 271 and Western Electric, working on SCR 268, both brought out their people, equipment and erected buildings to complete the contracts for units.

Because of the lack of elevation on the sand dunes of Sandy Hook needed for long range radar, specifically SCR-270, four 100 foot tall poles were positioned to test at different levels. In addition, the Signal Corps sought and received permission to use part of the Navesink Light Station with its higher elevation. The US Lighthouse Service allowed the army use the north tower as well four inside rooms and half of the property. Even this addition did not afford the Army enough space for the required tests.

With World War II beginning in September of 1939 in Europe, the need for space as well as impending war looming over the US made these tests more critical. Just prior to the United States' entry into the war, the Signal Corps set out to buy more properties to use for testing. The Signal Corps created in 1941–42 three locations outside of Fort Monmouth for testing. Field Laboratory 1 was located at what later became Camp Coles on Newman Springs Road in Red Bank. Field Laboratory 2 was later to become
the Charles Woods Area in Eatontown. Field Laboratory 3 was first located at Fort Hancock and soon relocated to the much larger Camp Evans in Wall Township. Before the move occurred however a drafting section and drafting school were opened at Fort Hancock. They were eventually moved to Camp Evans. By the end of 1942 Fort Hancock’s facilities were completely transferred.

Radars in use

Initially tested at Fort Hancock, the Radio Position Finding equipment was first deployed in the Panama Canal Zone, at Fort Sherman in June of 1940. This was a SCR 271 fixed station and it became the first American radar at work on US defenses.

Soon thereafter, many units of the SCR 270s, which was a mobile long range unit were sent to both Hawaii and the Philippines in late 1941. These were followed by a series of units positioned along the Pacific and Atlantic coasts of the United States.

The positions were established to provide early warning in the event of incoming enemy attack. The most famous SCR-270 radar unit was placed on Opana Point, Hawaii in 1941. This unit’s operators saw something unusual on the screen at 7:02 am on December 7, 1941. It was scheduled to be turned off at 7 am but Private George Elliot and Joseph Lockhard decided to get some extra training time in because their ride to base was delayed. The large disturbance on the screen was at first believed to be the equipment malfunctioning. They realized it might be airplanes and alerted the information office where a young Lieutenant told them it was Army B-17s and to not be alarmed. The rest is history as Pearl Harbor was attacked and the United States was officially at war.

FORT HANCOCK TO CAMP EVANS

In 1914, the Marconi Wireless Telegraph Company of America established the Belmar Receiving Station along the Shark River in Wall Township, NJ and installed its antennas for transatlantic communications. In subsequent years the location had several uses but in November of 1941, the Army purchased the property of 93 acres and renamed it the Evans Signal Laboratory.

In 1942, it was redesignated Camp Evans Signal Laboratory. That same year the drafting section moved from Fort Hancock to Camp Evans. Following them were the machine and Carpenter shops. Fort Hancock’s use as an operations base for the
development of radar from 1937 to 1942 had come to an end. In addition to the need for more space, the location was considered unsafe since the beginning of war with Germany.

Camp Evans served the Signal Corps throughout WWII. After the war, communications research continued including early space communications and satellites. Camp Evans changed its name in 1958 to Evans Area. As part of the Base Realignment and Closure, it was designated for closure in 1993. Over the next decade cleanups and eventual transfer occurred. In 2002, the Camp Evans Historic District was created and consists of 37 acres of its original larger site. In 2012, the site was given the highest historic significance status of National Historic Landmark for its contribution to World War II and the American Homefront. The historic core of the property is managed by Infoage Science History Learning Center and Museum. It is open to the public three days a week.

Below are edited transcripts of oral history interview with civilians working at the RPF section at Fort Hancock. These interviews are available on the Gateway NRA website https://www.nps.gov/gate/learn/historyculture/sandyhookpeople.htm

Peter Kennedy

. . . in 1939, I made an application for a job from the Army. I was an engineering draftsman. I was notified that I was accepted in 1939 and the job was down here and the other one was Pearl Harbor. I didn’t know where Pearl Harbor was, but this was closer and I accepted that. . . . I had an appointment in both places, Fort Monmouth and Pearl Harbor. Pearl Harbor paid $200 a month more. So, I accepted the position at Fort Monmouth. They needed people badly so I came down here. I reported to Fort Monmouth and then Colonel Corput and Paul Watson. Paul Watson was the chief civilian. Colonel Corput was the head military. So they asked about 12 of us all over the country. They asked us if we wouldn’t mind going out to Fort Hancock. So, we said, “Where is Fort Hancock?” And nobody had any objections so he said, “Fine.” And they opened up those buildings on the beach. And we were there right up to Pearl Harbor. And we developed the SCR-268, the first radar. We had a parade on the beach when it was finished. It was very top secret until it was finished and then it was still classified secret, the details of it was. So, we had a party on the beach and then we had a beach party was given later in the evening at a beach club in Long Branch, North Long Branch. . . . And then we stayed here and then after Pearl Harbor, somebody, maybe security wise, they decided to move us down to Camp Evans. Then we went down to Camp Evans. I was there a couple of months after Pearl Harbor and everything. . . . I would have stayed here, but being single I wouldn’t probably get any deferments. I had four or five of them while I was out there, but now with Pearl Harbor they take anybody that wasn’t married. So, ’41 was Pearl Harbor and
we moved to Camp Evans. Camp Evans and we did a lot of testing. We were testing, in those days we had tubes. We didn’t have transistor things and things like that. That was all the Thermonetics Branch out here, Hancock and then we went down to Camp Evans.

The early radar was portable. You folded that up and you went in vehicles and you moved it. But the big antennas, if you painted them black, they would collect the heat from the sun. . . . I came here as a senior engineering draftsman. That was about $1800 a year. That was very good. The Depression was ending in 1939 and we were phasing into the War effort and that was a good salary. I was out here about two months . . . So, I didn’t have a degree though. I had two years of college. So, he said, “Pete, . . . Would you accept a P2?” That was $2600 a year. There was P2, P3, P4. They all went up under $3000, but that was good money back then. So, I was P2. I went in the Army as a P2. When I came back (after serving in World War II) they insisted on me taking a P3. That was $3200. And when I left there, I was at the top of my grade. I left there I was a senior draftsman. . . . I was a draftsman and I remember working on those antennas, drawing them up. And we had testing. I wasn’t doing the testing, but I recommended tests. So, I was familiar with drafting. . . . In Camp Evans. That’s where we started. First radar was the (SCR-) 268 it was the big thing we did.

May Siciliano
Well, just before graduation, six weeks before, the government came and they asked . . . they were giving courses and one of them was mechanical drafting. So I signed up and for six weeks we took lessons and then they gave you a test and if you passed the test then they would hire you and you would continue your school. So that’s when a lot of the kids went to Fort Hancock. In June is when I went in. 1942. It was about eight months I guess. Then I was transferred to Camp Evans. Oh yes. It was a school and they were going to teach us mechanical drafting. I worked for four years at it. After I got out of school, I was working four years.

I know it was “SP.” “SP” was sub-professional one or two. I think it was two but I’m not sure. It was a long time ago. All I know was it was about a thousand dollars a year . . . somewhere around that. Well after that we worked with the engineers. They gave us things to do, draw, and we had to do it by scale. It was always machinery, because I didn’t know what they wanted. It was a secret. They wouldn’t tell us what it was for. I had to get up at five o’clock every morning. There was one bus. That’s all it was, one bus. One time I woke up too late and I had to have my father drive me to the Gate and he couldn’t go in. So, I had to get a ride with somebody that I didn’t know, which I was scared to death. I loved it there. At lunch time we ate over at the bay. We didn’t go to the ocean part but I had lunch at the bay outside. In the summer time it was really nice. Then they had a bomb shelter for us because of the German submarines off the shore there. Every time they rang that bell, boy,
we had to rush into the shelter. They all went to Camp Evans and then after that they transferred me to the Air Force.

The drafting is art, but it’s a little harder. You have to know figures and drafting. But art, I loved the other art... you know painting. In fact, I still do it today. Well, it was drafting. I did drafting there too. It was different drafting. It was mapmaking, making the maps, but it was different than the mechanical drafting. But that helped me get a job there.

Just going out there and... before I got to Fort Hancock to see the sun rising. Being an artist, I always loved art, I loved the sun set coming up because every day it was a different kind. It was different every day. It was beautiful. Working over there, learning how to do things, doing the drafting with all my friends there. I had a nice time there.

Julian Jones

That they were starting a training program. So and I went down to apply for it. And it was in the Newark College of Engineering. And at night they called it Newark Technical School. So, I applied, and I was accepted, and I went there. I went four nights a week from 7 to 10 (P.M.). And I think I went from, I had it down here somewhere, about 8 months. I was accepted for a job as an apprentice draftsman. And I had a lot of drafting and mechanical pointing in high school. And I always liked it, so it was, it fell right in with a lot of the work that I was wanting to do. And the work that we, the schooling, was in drafting and shop work, which included welding, machine shop, and forging. And they sent me a card to come down to Fort Monmouth for an interview. Which at that time paid about, I think $1,200.00 a year. And, I had the option of starting the work in Fort Monmouth or out here.

I started here on June the 9th, 1941. And after about a year here, they moved our part down to Camp Evans in Belmar, Wall Township. So I moved down there. I worked down there. That was about, I would say about a year, In fact, they were, at the introduction to coming to work here, it was impressed upon me about secrecy. And that I was not supposed to tell anybody where I worked or anything like that. And, a little bit along that line, I was, one time, when I went home, I went to, you know, all these neighborhoods in the city, they got a candy store on the corner. So, I went into the candy store for cigarettes or whatever, and the woman who ran it, owned it, she asked me what kind of trouble I was in. And I said, ya know, I says ‘I’m not in any trouble. Why, what’s the matter?’ She says, ‘The cops were in here asking about you.’ So, and the things they asked, I says, ‘Oh, I think I know what that’s all about.’ So, what it was, was a check, security check that I guess the FBI got a hold of the local police and said ‘check this guy out’ and so on and so forth. But, my parents didn’t know where I worked. I never told them. They didn’t know what I did, but there again I never told them. And I used to like to read the “Popular
Science” and “Popular Mechanics” magazines. So, one day, I picked one of these up and I’m paging through it, and lo and behold I see a picture of a 268. Now the 268 was a radar set, was probably the first ones that they built and this is what we were doing here and making drawings on, for other ones they were going to build here. They were testing them out, down here. So Well, I worked in the, it was, this was an RDF Laboratory. That stood for Radio Direction Finding Laboratory and that was part of the Fort Monmouth, and that was SCEL, Signal Corps Engineering Laboratory. And, the people I worked with, the drafting room, I think it was just called, the Drafting Room. And they had two sections in there. One was Development and the other side was Production. Now, this is Development when they are making drawings for new items, and then Production, after this is, after everything has been tested and done, and they are gonna let it out to manufacture, they make production drawings.

Well, I continued working for the Government, and I had 37 years in. I retired from the Hexagon in 1977 or 78. Radar was in its infancy then, and we had a set out on the beach. And they were constantly trying to make improvements on it and so on. We had an original set. Was a 268, and that was on a four-wheeled trailer. And at some period of time, somewhere along the line, they had tests on it. So, they used to hire, I think, it was a Stinson aircraft, and a civilian, and he used to come out of Red Bank Airport. And he would fly a big triangle. And he would start . . . now, there was two lightships out here, the Scotland Lightship, and the Ambrose Lightship, and I think the Ambrose was the furthest one out. I’m not sure which was which, but that would be out at the end of Long Island, and he used to fly a big triangle. And he would start . . . now, there was two lightships out here, the Scotland Lightship, and the Ambrose Lightship, and I think the Ambrose was the furthest one out. I’m not sure which was which, but that would be out at the end of Long Island, and he used to fly a triangle from Deal, out to that light, one light or the other, and back, to Coney Island Gas Tanks, and then go south again, back to Deal. Made quite a big triangle. And the radar was tracking him. It was a nice sized plane, so it was a nice target. And they’d track him. And they’d have, and as the radar moved to track him, there’s a slave, they call it comparator, and that’s hooked up to it, so that when that moves, the comparator moves the same way. And there are dials on the comparator that, there’s two men on there that used to call out the like the azimuth that angles this way and elevation this way and range, and I forget which ones now, raised it, but it was interesting. But they would call ’em out. And I had a clipboard and I’d write this stuff down. And after the test was done, I’d go back in and I’d plot these things on a graph. And then they were able to see you know how the test was going.

Mary Rasa formerly was a park ranger and museum curator for the National Park Service at Sandy Hook, NJ. She recently completed her MSLS degree with a capstone internship with the CECOM Historical Office at Aberdeen Proving Ground, MD.

REFERENCES:

Development of Radar on the Jersey Shore | Mary Rasa | www.GardenStateLegacy.com Issue 41 September 2018